Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 31(4): 1317-1331, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34865251

RESUMO

The hindgut of lower termites is generally coinhabited by multiple morphologically identifiable protist species. However, it is unclear how many protist species truly coexist in this miniaturized environment, and moreover, it is difficult to define the fundamental unit of protist diversity. Species delineation of termite gut protists has therefore been guided without a theory-based concept of species. Here, we focused on the hindgut of the termite Reticulitermes speratus, where 10 or 11 morphologically distinct oxymonad cell types, that is, morphospecies, coexist. We elucidated the phylogenetic structure of all co-occurring oxymonads and addressed whether their diversity can be explained by the "ecotype" hypothesis. Oxymonad-specific 18S rRNA gene amplicon sequencing analyses of whole-gut samples, combined with single-cell 18S rRNA sequencing of the oxymonad morphospecies, identified 210 one-nucleotide-level variants. The phylogenetic analysis of these variants revealed the presence of microdiverse clusters typically within 1% sequence divergence. Each known oxymonad morphospecies comprised one to several monophyletic or paraphyletic microdiverse clusters. Using these sequence data sets, we conducted computational simulation to predict the rates of ecotype formation and periodic selection, and to demarcate putative ecotypes. Our simulations suggested that the oxymonad genetic divergence is constrained primarily by strong selection, in spite of limited population size and possible bottlenecks during intergenerational transmission. A total of 33 oxymonad ecotypes were predicted, and most of the putative ecotypes were consistently detected among different colonies and host individuals. These findings provide a possible theoretical basis for species diversity and underlying mechanisms of coexistence of termite gut protists.


Assuntos
Isópteros , Oximonadídeos , Animais , Ecótipo , Variação Genética/genética , Humanos , Isópteros/genética , Filogenia , Simbiose
2.
Sci Rep ; 6: 31379, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27506964

RESUMO

Physiological processes such as metabolism, cell apoptosis and immune responses, must be strictly regulated to maintain their homeostasis and achieve their normal physiological functions. The speed with which bio-molecular homeostatic regulation occurs directly determines the ability of an organism to adapt to conditional changes. To produce a quick-responsive regulatory system that can be easily utilized for various types of homeostasis, a device called nano-fingers that facilitates the regulation of physiological processes was constructed using DNA origami nanotechnology. This nano-fingers device functioned in linked open and closed phases using two types of DNA tweezers, which were covalently coupled with aptamers that captured specific molecules when the tweezer arms were sufficiently close. Via this specific interaction mechanism, certain physiological processes could be simultaneously regulated from two directions by capturing one biofactor and releasing the other to enhance the regulatory capacity of the device. To validate the universal application of this device, regulation of the homeostasis of the blood coagulant thrombin was attempted using the nano-fingers device. It was successfully demonstrated that this nano-fingers device achieved coagulation buffering upon the input of fuel DNA. This nano-device could also be utilized to regulate the homeostasis of other types of bio-molecules.


Assuntos
DNA/metabolismo , Nanotecnologia/instrumentação , Trombina/metabolismo , Fenômenos Biomecânicos , DNA/química , Homeostase , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...